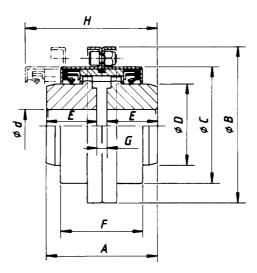

Riddhi Engineering Company www.couplings-mounts.com sales@riddhiengineeringco.com +91 74900 32784

FLEXIBLE GEAR COUPLINGS

SERIES N Maximum torque: up to 2 000 Nm — Bores: up to 65 mm

FEATURES

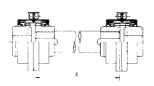
The ESCOGEAR couplings of the series N distinguish themselves by:

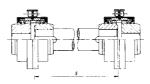

- maximum bores defined in function of standardized shaft diameters according to ISO and IEC.
- reduced outside dimensions and weights from which result very small axial load and thrust on the connected shafts.
- a sufficiently balanced coupling for the maximum indicated speeds, all the components being machined.
- easy installation no special tooling is required.
- an absolute reliability and minimum maintenance.
- a perfect homocinetic torque transmission.

NST 25 ⇒ 65

Riddhi Engineering Company www.couplings-mounts.com sales@riddhiengineeringco.com +91 74900 32784

∠, max. 1,5°


←A150			Type NST				
			50	25	38	45	65
Ø	max.	1	mm	25	38	45	65
	min.		mm	0	0	0	26
mN.	Tn	2	Nm	200	450	800	2000
01m ↓	Тр			400	900	1600	4000
/min.max.			tr/min omw/min rpm min ⁻¹	6300	4800	4100	3000
	<u>γ</u> α	-	degré graad degree grad	2x0,75	2x0,75	2x0,75	2x0,75
+		-	mm	0,1	0,11	0,13	0,15
- J (WR ²)		4	kgm²	0,0004	0,0013	0,002	6 0,0102
¢		5	kg	0,85	1,81	2,97	7,23
Grease		6	dm³	0,01	0,02	0,03	0,05
	А		mm	58	75	95	135
	В		mm	76,5	94	109	134,5
	С		mm	57,5	74,5	86	111,5
mm: +	D		mm	40	54	64	89
<u>T</u>	E		mm	27	35	45	65
	F		mm	42	48	55	63
	G		mm	4	5	5	5
	Н	10	mm	70	85	105	135


NFS 25 ⇒ 65

🚈 max. 0,75°

←A150			Type NFS				
			25	38	45	65	
	Ø max.	- 1	mm	25	38	45	65
	Ø min.		mm	0	0	0	26
Tn			Nex	200	450	800	2000
<u>1m ↓</u>	Тр	2	Nm	400	900	1600	4000
/min.max.		3.3	tr/min omw/min rpm min ⁻¹				
α		-	degré graad degree grad	0,75	0,75	0,75	0,75
- J (WR ²)		4	kgm²	0,0004	0,0013	0,0026	0,0102
¢		5	kg	0,85	1,81	2,97	7,23
Grease		6	dm³	0,01	0,02	0,03	0,05
	Α		mm	58	75	95	135
	В		mm	76,5	94	109	134,5
	С		mm	57,5	74,5	86	111,5
	D		mm	40	54	64	89
mm: ±	E		mm	27	35	45	65
	F		mm	42	48	55	63
	G		mm	4	5	5	5
	н	10	mm	70	85	105	135
(min)	S	8	mm	60	70	90	130

+91 74900 32784

HOW TO SELECT THE RIGHT COUPLING SIZE

A. Select the size of ESCOGEAR coupling that will accommodate the largest shaft diameter.

B. Make sure this coupling has the required torque capacity according to following formula: torque in Nm =

9550 x P x F 🛛 x F 🕾

P = power in kW; **n** = speed in rpm; **F**_u = service factor according to tabulation 1.

F 🐵 = 2 in case of use in potentionally explosive atmospheres 🐼 , European Directive 94/9/EC. In normal atmospheres, F 🚱 = 1.

The coupling selected per (A) must have an equal or greater torque capacity than the result of the formula (B). If not select a larger size coupling. Check if application peak torque does not exceed tabulated peak torque Tp indicated planographs A210 and A211.

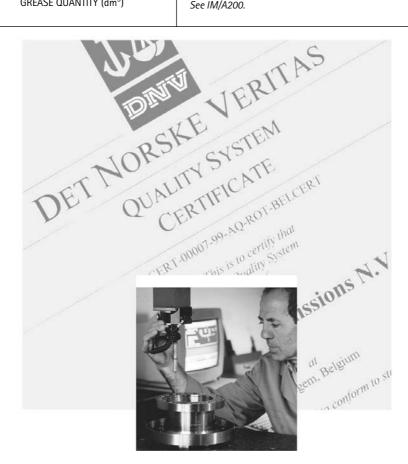
Check also max. allowable misalignment using the graph of tabulations 1 and 2.

C. Check if shaft/hub connection will transmit the torque. If necessary, select a longer hub.

D. Read carefully assembly and maintenance instructions IM.

			DRIVER MACHINE			
_	TABUL	ATION 1 APPLICATIONS	Electric motors Turbines	Hydraulic motors Gears drivers	Reciprocating engine Electric motors frequent starts	
NE	UNIFORM	Generators - Blowers: centrifugal vane, fans - Centrifugal pumps and compressors - Machine tools: auxiliary drives - Conveyors: belt and chain, uniformly loaded, escalators - Can filling machines and bottling machinery - Agitators: pure liquids.	0,8 to 1,25	Service factor F _u 1 to 1,5	1,25 to 1,75	
		Propeller - Waterjet pumps	1,25	1,5	1,75	
DRIVEN MACHINE	MODERATE SHOCKS	Blowers: lobe - Pumps: gear and lobe types - Vane compressors - Machine tools: main drives - Conveyors: belt and chain not uniformly fed bucket and screw - Elevators, cranes, tackles and winches - Wire winding machines, reels, winders (paper industry) - Agitators liquids and solids, liquids variable density.	1,25 to 1,5	1,5 to 1,75	1,75 to 2	
DR	HEAVY SHOCKS	Generators (welding) - Reciprocating pumps and compressors - Laundry washers - Bending roll, punch press, tapping machines - Barkers, calanders, paper presses - Briquetter machines, cement furnace - Crushers: ore and stone, hammer mill, rubber mill - Metal mills: forming machines, table conveyors - Draw Bench, wire drawing and flattening machines - Road & railroad equipment.	1,5 to 2	1,75 to 2,25	2 to 2,5	

HOW TO USE THE GRAPH ?


Maximum torque, maximum speed and maximum misalignment may not occur simultaneously. Graph must be used as follows:

- 1. Calculate Tn and Tp and select coupling size as usual. Tn = nominal torque; Tp = peak torque
- 2. Calculate Tn/TnRef and n/nRef and plot the resulting point in the graph.
- 3. If the resulting point is located in the white area, a standard coupling may be used as far as maximum misalignment doesn't exceed the maximum misalignment indicated in the graph.
- 4. If the resulting point is located in the shaded area, refer to ESCO
- 5. In case of use in potentionally explosive atmospheres 🚱 , proceed the same way but using Tn Ref 🚱 for the calculation. Max misalignement may not exceed 0,5° per gear mesh.

Riddhi Engineering Company www.couplings-mounts.com sales@riddhiengineeringco.com +91 74900 32784

LEGE	ND OF USED PICTOGRAMS	Notes for series N		
d Ø nominal max.	MAXIMUM NOMINAL BORE (mm)	1 For key according to ISO R 773.		
d Ømin.	MINIMUM BORE (mm)	2 Gear maximum continuous transmissible torque for the tabulated mis-		
dØmax.	MAXIMUM BORE (mm)	alignment. The effective transmissible torque depends on the bore and		
_ Tn	MAXIMUM NOMINAL TORQUE (Nm)	shaft/hub connection. 3 Higher speed on special request.		
	MAXIMUM PEAK TORQUE (Nm)	 3.1 For grease withstanding centrifugal acceleration of 1.000g. See installation and maintenance manual IM. 		
/min.max.	MAXIMUM SPEED (rpm)	 3.2 For grease withstanding centrifugal acceleration of 2.000g. See installation and maintenance manual IM. 3.3 Depends on S. 		
‡	MAXIMUM OFFSET (mm)	 3.4 For long operation in disconnected position contact us. 4 For solid bore. 4.1 Depends on S. 		
α	MAXIMUM ANGULAR MISALIGNMENT (degree)	 4.2 For solid bore and S minimum. 4.3 Per 100 mm spacer length. 4.4 Depends on L and R. 5 For pilot bored hubs. 5.1 Depends on S. 		
		 5.1 Depends on 2. 5.2 For pilot bored hubs and S minimum. 5.3 Per 100 mm spacer length. 5.4 Depends on L and R. 		
- J (WR ²)	INERTIA (kgm²)	 6 See installation and maintenance manual IM. 6.1 Depends on S. Values given for S maximum. 7 On request. For larger S contact us. 		
¢	WEIGHT (kg)	 8 Values for S minimum. S maximum depends on torque and speed. 9 G must remain constant during operation. 10 Needed to control the alignment and inspect the gears. 		
Grease	GREASE QUANTITY (dm ³)	* Max. torque, speed and misalignment tabulated values may not be cumulated. See IM/A200.		

